Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Human Action Recognition Based on a Spatio-Temporal Video Autoencoder

Texto completo
Autor(es):
Sousa e Santos, Anderson Carlos [1] ; Pedrini, Helio [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Comp, BR-13083852 Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE; v. 34, n. 11 OCT 2020.
Citações Web of Science: 0
Resumo

Due to rapid advances in the development of surveillance cameras with high sampling rates, low cost, small size and high resolution, video-based action recognition systems have become more commonly used in various computer vision applications. Human operators can be supported with the aid of such systems to detect events of interest in video sequences, improving recognition results and reducing failure cases. In this work, we propose and evaluate a method to learn two-dimensional (2D) representations from video sequences based on an autoencoder framework. Spatial and temporal information is explored through a multi-stream convolutional neural network in the context of human action recognition. Experimental results on the challenging UCF101 and HMDB51 datasets demonstrate that our representation is capable of achieving competitive accuracy rates when compared to other approaches available in the literature. (AU)

Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático