| Texto completo | |
| Autor(es): |
Número total de Autores: 2
|
| Afiliação do(s) autor(es): | [1] Univ Nacl Autonoma Mexico, Ctr Ciencias Matemat, Apartado Postal 61-3, Morelia 58089, Michoacan - Mexico
[2] Univ Sao Paulo, Inst Matemat & Estat, Dept Matemat, Rua Matao 1010, BR-05508090 Sao Paulo, SP - Brazil
Número total de Afiliações: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Topology and its Applications; v. 285, NOV 1 2020. |
| Citações Web of Science: | 0 |
| Resumo | |
We say that a space X is selectively pseudocompact if for each sequence (U-n)(n<omega) of nonempty open subsets of X there is a sequence (x(n))(n<omega) of points in X such that xn is an element of U-n, for each n < omega, and the set [x(n) : n < omega] has a cluster point in X. We prove that if p and q are not equivalent selective ultrafilters on omega, then there are a p-compact group and a q-compact group whose product is not selectively pseudocompact. (C) 2020 Elsevier B.V. All rights reserved. (AU) | |
| Processo FAPESP: | 19/19924-4 - grupos pseudocompactos e propriedades relacionadas |
| Beneficiário: | Artur Hideyuki Tomita |
| Modalidade de apoio: | Bolsas no Exterior - Pesquisa |