Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Cooperative Localization for Multiple Soccer Agents Using Factor Graphs and Sequential Monte Carlo

Texto completo
Autor(es):
Fernandes, Guilherme C. G. [1, 2] ; Dias, Stiven S. [2] ; Maximo, Marcos R. O. A. [3] ; Bruno, Marcelo G. S. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Inst Tecnol Aeronaut, BR-12228900 Sao Jose Dos Campos - Brazil
[2] Embraer SA, BR-12227901 Sao Jose Dos Campos - Brazil
[3] Inst Tecnol Aeronaut, Autonomous Computat Syst Lab LAB SCA, Comp Sci Div, BR-12228900 Sao Jose Dos Campos - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: IEEE ACCESS; v. 8, p. 213168-213184, 2020.
Citações Web of Science: 0
Resumo

This paper addresses the cooperative localization problem for a multiagent system in the framework of belief propagation. In particular, we consider the RoboCup 3D Soccer Simulation scenario, in which the networked agents are able to obtain simulated measurements of the distance and bearing to both known landmarks and teammates as well as the direction of arrival (DOA) of messages received from allies around the field. There are, however, severe communication restrictions between the agents, which limit the size and periodicity of the information that can be exchanged between them. We factorize the joint probability density function of the state of the robots conditioned on all measurements in the network in order to derive the corresponding factor graph representation of the cooperative localization problem. Then we apply the sum-product-algorithm (SPA) and introduce suitable implementations thereof using hybrid Gaussian-Mixture Model (GMM) / Sequential Monte Carlo (SMC) representations of the individual messages that are passed at each network location. Simulated results show that the cooperative estimates for position and orientation converge faster and present smaller errors when compared to the non-cooperative estimates in situations where agents do not observe landmarks for a long period. (AU)

Processo FAPESP: 18/26191-0 - Métodos Bayesianos para estimação distribuída em redes cooperativas
Beneficiário:Marcelo Gomes da Silva Bruno
Modalidade de apoio: Auxílio à Pesquisa - Regular