Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Spin-1 spin-orbit- and Rabi-coupled Bose-Einstein condensate solver

Texto completo
Autor(es):
Ravisankar, Rajamanickam [1] ; Vudragovic, Dusan [2] ; Muruganandam, Paulsamy [1, 3] ; Balaz, Antun [2] ; Adhikari, Sadhan K. [4]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Bharathidasan Univ, Dept Phys, Palkalaiperur Campus, Tiruchirappalli 620024, Tamil Nadu - India
[2] Univ Belgrade, Inst Phys Belgrade, Pregrev 118, Belgrade 11080 - Serbia
[3] Bharathidasan Univ, Dept Med Phys, Palkalaiperur Campus, Tiruchirappalli 620024, Tamil Nadu - India
[4] UNESP Univ Estadual Paulista, Inst Fis Teor, BR-0114070 Sao Paulo - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: COMPUTER PHYSICS COMMUNICATIONS; v. 259, FEB 2021.
Citações Web of Science: 3
Resumo

We present OpenMP versions of FORTRAN programs for solving the Gross-Pitaevskii equation for a harmonically trapped three-component spin-1 spinor Bose-Einstein condensate (BEC) in one (1D) and two (2D) spatial dimensions with or without spin-orbit (SO) and Rabi couplings. Several different forms of SO coupling are included in the programs. We use the split-step Crank-Nicolson discretization for imaginary- and real-time propagation to calculate stationary states and BEC dynamics, respectively. The imaginary-time propagation programs calculate the lowest-energy stationary state. The real-time propagation programs can be used to study the dynamics. The simulation input parameters are provided at the beginning of each program. The programs propagate the condensate wave function and calculate several relevant physical quantities. Outputs of the programs include the wave function, energy, root-mean-square sizes, different density profiles (linear density for the 1D program, linear and surface densities for the 2D program). The imaginary- or real-time propagation can start with an analytic wave function or a pre-calculated numerical wave function. The imaginary-time propagation usually starts with an analytic wave function, while the real-time propagation is often initiated with the previously calculated converged imaginary-time wave function. (C) 2020 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 16/01343-7 - ICTP Instituto Sul-Americano para Física Fundamental: um centro regional para física teórica
Beneficiário:Nathan Jacob Berkovits
Modalidade de apoio: Auxílio à Pesquisa - Projetos Especiais