| Texto completo | |
| Autor(es): |
Número total de Autores: 3
|
| Afiliação do(s) autor(es): | [1] Univ Illinois, Dept Math, Champaign, IL 61801 - USA
[2] Univ Estadual Campinas, Dept Math, BR-13083970 Campinas - Brazil
[3] Univ Illinois, Dept Elect & Comp Engn, Champaign, IL 61801 - USA
Número total de Afiliações: 3
|
| Tipo de documento: | Artigo Científico |
| Fonte: | IEEE TRANSACTIONS ON INFORMATION THEORY; v. 67, n. 1, p. 347-357, JAN 2021. |
| Citações Web of Science: | 0 |
| Resumo | |
Consider a directed graph (digraph) in which vertices are assigned color sets, and two vertices are connected if and only if they share at least one color and the tail vertex has a strictly smaller color set than the head. We seek to determine the smallest possible size of the union of the color sets that allows for such a digraph representation. To address this problem, we introduce the new notion of a directed intersection representation of a digraph, and show that it is well-defined for all directed acyclic graphs (DAGs). We then proceed to introduce the directed intersection number (DIN), the smallest number of colors needed to represent a DAG. Our main results are upper bounds on the DIN of DAGs based on what we call the longest terminal path decomposition of the vertex set, and constructive lower bounds. (AU) | |
| Processo FAPESP: | 15/11286-8 - Métricas que respeitam suporte e decodificação de máxima proximidade |
| Beneficiário: | Roberto Assis Machado |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |