Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Aqueous viscosity of carbohydrates: Experimental data, activity coefficient modeling, and prediction with artificial neural network-molecular descriptors

Texto completo
Autor(es):
Varnier, Karine [1] ; Galvao, Alessandro C. [1] ; Arce, Pedro F. [2] ; Robazza, Weber S. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Santa Catarina State Univ UDESC, Lab ApTher Appl Thermo Phys, Dept Food & Chem Engn, BR-89870000 Pinhaizinho, SC - Brazil
[2] Univ Sao Paulo, Engn Sch Lorena, Dept Chem Engn, BR-12600970 Lorena, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF MOLECULAR LIQUIDS; v. 322, JAN 15 2021.
Citações Web of Science: 0
Resumo

Food waste is a rich source of carbohydrates. This material can be reprocessed in order to produce purified compounds or other materials with high added value. The implementation of processes that enable this transformation depends on kinematic viscosity data and robust mathematical modeling. In order to meet part of this demand, the objective of this work was to study the kinematic viscosity of binary and ternary solutions involving sucrose, sorbitol, xylose and xylitol in the temperature range between 303.15K and 363.15 K at concentrations of 0.5 mol.kg(-1) to 3.0 mol.kg(-1). In the correlation of experimental data, the Eyring equation was associated to the Ma rgules, van bar, Wilson and NR-11. models. In the simulation, an artificial neural network associated with molecular descriptors was developed. The experimental results showed to be dependent on the number of OH groups present in the sugar. The mathematical modeling proved to be efficient in the treatment of the experimental data, with the NRTL model being the one with the best performance. Artificial neural networks were satisfactory in the simulation of the data, with the 7-7-5-1 architecture being the one with the best data prediction capacity. (C) 2020 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 15/05155-8 - Modelagem de propriedades termofísicas de fluidos puros (líquidos iônicos e compostos presentes em produtos naturais) e comportamento termodinâmico do equilíbrio de fases de misturas
Beneficiário:Pedro Felipe Arce Castillo
Modalidade de apoio: Auxílio à Pesquisa - Regular