Intelligent Routing Based on Reinforcement Learnin... - BV FAPESP
Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Intelligent Routing Based on Reinforcement Learning for Software-Defined Networking

Texto completo
Autor(es):
Casas-Velasco, Daniela M. [1] ; Rendon, Oscar Mauricio Caicedo [2] ; da Fonseca, Nelson L. S. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Comp, BR-13083852 Campinas - Brazil
[2] Univ Cauca, Dept Telemat, Popayan 190002 - Colombia
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT; v. 18, n. 1, p. 870-881, MAR 2021.
Citações Web of Science: 1
Resumo

Traditional routing protocols employ limited information to make routing decisions, which can lead to a slow adaptation to traffic variability, as well as restricted support to the Quality of Service (QoS) requirements of applications. This article introduces a novel approach for routing in Software-defined networking (SDN), called Reinforcement Learning and Software-Defined Networking Intelligent Routing (RSIR). RSIR adds a Knowledge Plane to SDN and defines a routing algorithm based on Reinforcement Learning (RL) that takes into account link-state information to make routing decisions. This algorithm capitalizes on the interaction with the environment, the intelligence provided by RL and the global view and control of the network furnished by SDN, to compute and install, in advance, optimal routes in the forwarding devices. RSIR was extensively evaluated by emulation using real traffic matrices. Results show RSIR outperforms the Dijkstra's algorithm in relation to the stretch, link throughput, packet loss, and delay when available bandwidth, delay, and loss are considered individually or jointly for the computation of optimal paths. The results demonstrate that RSIR is an attractive solution for intelligent routing in SDN. (AU)

Processo FAPESP: 15/24494-8 - Comunicação e processamento de big data em nuvens e névoas computacionais
Beneficiário:Nelson Luis Saldanha da Fonseca
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 19/03268-0 - Roteamento em redes definidas por software com aprendizado de máquina
Beneficiário:Daniela Maria Casas Velasco
Modalidade de apoio: Bolsas no Brasil - Mestrado