Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Thermodynamic and structural aspects of molecular recognition in mannose-binding protein complexes: a theoretical study over HRP-ArtinM association

Texto completo
Autor(es):
Santo, Anderson Aparecido do Espirito [1] ; Feliciano, Gustavo Troiano [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Sao Paulo State Univ, Inst Chem, Araraquara, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Journal of Molecular Modeling; v. 27, n. 4 MAR 15 2021.
Citações Web of Science: 0
Resumo

The biomolecular recognition of D-mannose-binding lectin from Artocarpus heterophyllus (ArtinM) by Horseradish Peroxidase (HRP) mediated by glycosylation allows their application in a multitude of biological systems. The present work describes the use of molecular dynamics (MD) to assess the Gibbs free energy associated with the formation of a ArtinM-HRP conjugate mediated by a glycosylation molecule. For the enthalpy term, we applied the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method and for the vibrational entropy term, we use the quasi-harmonic approximation. Our results show that, even without glycosylation, the binding free energy between ArtinM and HRP is - 196.154 kJmol(- 1), an extremely high affinity with low selectivity, originated mainly through the van der Waals energy terms. The binding free energy between ArtinM and the glycosylated HRP (gHRP) was calculated at - 66.156 kJmol(- 1), an absolute and considerably lower value, however, originated from electrostatic energy terms, which increases the selectivity of molecular recognition. Our work has shown that the HRP active site region has a high affinity and low selectivity for other biomolecules. The presence of glycosylation plays a role in increasing this selectivity for this region. Thus, we conclude that performing mutagenesis of amino acid residues near the entrance of the catalytic site, can improve the activity of non-glycosylated HRPs. This illustrates new insights that can be applied to carbohydrate-based immunochemistry. (AU)

Processo FAPESP: 17/24839-0 - Eletrônica e eletroquímica em escala nanométrica: fundamentos e aplicações
Beneficiário:Paulo Roberto Bueno
Modalidade de apoio: Auxílio à Pesquisa - Temático