Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On the length of cohomology spheres

Texto completo
Autor(es):
de Mattos, Denise [1] ; dos Santos, Edivaldo L. [2] ; Silva, Nelson Antonio [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP - Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, Km 235, Rodovia Washington Luis, BR-13565905 Sao Carlos, SP - Brazil
[3] Univ Fed Lavras, Dept Ciencias Exatas, Av Doutor Sylvio Menicucci 1001, BR-37200000 Lavras, MG - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Topology and its Applications; v. 293, APR 15 2021.
Citações Web of Science: 0
Resumo

In {[}2], T. Bartsch provided detailed and broad exposition of a numerical cohomological index theory for G-spaces, known as the length, where G is a compact Lie group. We present the length of G-spaces which are cohomology spheres and G is a p-torus or a torus group, where p is a prime. As a consequence, we obtain BorsukUlam and Bourgin-Yang type theorems in this context. A sharper version of the Bourgin-Yang theorem for topological manifolds is also proved. Also, we give some general results regarding the upper and lower bound for the length. (c) 2020 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 16/24707-4 - Topologia algébrica, geométrica e diferencial
Beneficiário:Daciberg Lima Gonçalves
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 11/23610-3 - Invariantes topológicos de problemas mini-max com simetria
Beneficiário:Nelson Antonio Silva
Modalidade de apoio: Bolsas no Brasil - Doutorado