Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Deep learning-based approach using X-ray images for classifying Crambe abyssinica seed quality

Texto completo
Autor(es):
de Medeiros, Andre Dantas [1] ; Bernardes, Rodrigo Cupertino [2] ; da Silva, Laercio Junio [1] ; Lemos de Freitas, Bruno Antonio [1] ; Fernandes dos Santos Dias, Denise Cunha [1] ; da Silva, Clissia Barboza [3]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Fed Vicosa, Dept Agron, Av PH Rolfs S-N, BR-36570900 Vicosa, MG - Brazil
[2] Univ Fed Vicosa, Dept Entomol, BR-36570900 Vicosa, MG - Brazil
[3] Univ Sao Paulo, Lab Radiobiol & Environm, Ctr Nucl Energy Agr, 303 Centenario Ave, BR-13416000 Piracicaba, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: INDUSTRIAL CROPS AND PRODUCTS; v. 164, JUN 2021.
Citações Web of Science: 3
Resumo

The application of imaging technologies combined with state-of-the-art artificial intelligence techniques has provided important advances in the modern oilseed industry. Innovative tools have been designed to improve the characterization of different classes of seeds, and consequently, decision making has become more efficient. This study aimed to assess the potential of deep learning models based on convolutional neural networks (CNN) for monitoring the quality of crambe seeds using X-ray images. In the proposed approach, seeds with different physical and physiological attributes were used to create the models. The models achieved accuracies of 91, 95, and 82 % for discrimination of seeds based on the integrity of internal tissues, germination, and vigor, respectively. Therefore, our findings indicated that digital radiographic images are suitable to provide relevant information on the physical and physiological parameters of crambe seeds. Furthermore, the proposed methodology could be used to classify seeds quickly, non-destructively, and robustly. (AU)

Processo FAPESP: 17/15220-7 - Métodos de análise de imagens não destrutivos para avaliação da qualidade de sementes
Beneficiário:Clíssia Barboza Mastrangelo
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores