Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Error estimates for the Scaled Boundary Finite Element Method

Texto completo
Autor(es):
Coelho, Karolinne O. [1] ; Devloo, Philippe R. B. [1] ; Gomes, Sonia M. [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, FEC, R Josiah Willard Gibbs 85, BR-13083 Campinas, SP - Brazil
[2] Univ Estadual Campinas, IMECC, Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING; v. 379, JUN 1 2021.
Citações Web of Science: 2
Resumo

The Scaled Boundary Finite Element Method (SBFEM) is a technique in which approximation spaces are constructed using a semi-analytical approach. They are based on partitions of the computational domain by polygonal/polyhedral subregions, where the shape functions approximate local Dirichlet problems with piecewise polynomial trace data. Using this operator adaptation approach, and by imposing a starlike scaling requirement on the subregions, the representation of local SBFEM shape functions in radial and surface directions is obtained from eigenvalues and eigenfunctions of an ODE system, whose coefficients are determined by the element geometry and the trace polynomial spaces. The aim of this paper is to derive a priori error estimates for SBFEM's solutions of harmonic test problems. For that, the SBFEM spaces are characterized in the context of Duffy's approximations for which a gradient-orthogonality constraint is imposed. As a consequence, the scaled boundary functions are gradient-orthogonal to any function in Duffy's spaces vanishing at the mesh skeleton, a mimetic version of a well-known property valid for harmonic functions. This orthogonality property is applied to provide a priori SBFEM error estimates in terms of known finite element interpolant errors of the exact solution. Similarities with virtual harmonic approximations are also explored for the understanding of SBFEM convergence properties. Numerical experiments with 2D and 3D polytopal meshes confirm optimal SBFEM convergence rates for two test problems with smooth solutions. Attention is also paid to the approximation of a point singular solution by using SBFEM close to the singularity and finite element approximations elsewhere, revealing optimal accuracy rates of standard regular contexts. (C) 2021 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 16/05155-0 - Simulação Multi Escala com Elementos Finitos
Beneficiário:Sônia Maria Gomes
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 17/08683-0 - Desenvolvimento de aproximações de elementos finitos SBFem para aproximação de problemas multi escala
Beneficiário:Philippe Remy Bernard Devloo
Modalidade de apoio: Bolsas no Exterior - Pesquisa