Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Deploying machine learning to assist digital humanitarians: making image annotation in OpenStreetMap more efficient

Texto completo
Autor(es):
Vargas Munoz, John E. [1] ; Tuia, Devis [2] ; Falcao, Alexandre X. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Lab Image Data Sci, Inst Comp, Campinas - Brazil
[2] Wageningen Univ & Res, Lab Geoinformat Sci & Remote Sensing, Wageningen - Netherlands
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE; v. 35, n. 9, p. 1725-1745, SEP 2 2021.
Citações Web of Science: 3
Resumo

Locating populations in rural areas of developing countries has attracted the attention of humanitarian mapping projects since it is important to plan actions that affect vulnerable areas. Recent efforts have tackled this problem as the detection of buildings in aerial images. However, the quality and the amount of rural building annotated data in open mapping services like OpenStreetMap (OSM) is not sufficient for training accurate models for such detection. Although these methods have the potential of aiding in the update of rural building information, they are not accurate enough to automatically update the rural building maps. In this paper, we explore a human-computer interaction approach and propose an interactive method to support and optimize the work of volunteers in OSM. The user is asked to verify/correct the annotation of selected tiles during several iterations and therefore improving the model with the new annotated data. The experimental results, with simulated and real user annotation corrections, show that the proposed method greatly reduces the amount of data that the volunteers of OSM need to verify/correct. The proposed methodology could benefit humanitarian mapping projects, not only by making more efficient the process of annotation but also by improving the engagement of volunteers. (AU)

Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 16/14760-5 - Anotação Interativa de Imagens de Sensoriamento Remoto
Beneficiário:John Edgar Vargas Muñoz
Modalidade de apoio: Bolsas no Brasil - Doutorado