Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Green Composite Sensor for Monitoring Hydroxychloroquine in Different Water Matrix

Texto completo
Autor(es):
de Araujo, Danyelle M. [1] ; Paiva, Suelya da Silva M. [1] ; Henrique, Joao Miller M. [1] ; Martinez-Huitle, Carlos A. [1, 2] ; Dos Santos, V, Elisama
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] V, Univ Fed Rio Grande do Norte, Lab Eletroquim Ambiental & Aplicada, BR-59072900 Lagoa Nova - Brazil
[2] V, Univ Estadual Paulista, Inst Chem, Natl Inst Alternat Technol Detect Toxicol Evaluat, POB 355, BR-14800900 Araraquara, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: MATERIALS; v. 14, n. 17 SEP 2021.
Citações Web of Science: 0
Resumo

Hydroxychloroquine (HCQ), a derivative of 4-aminoquinolone, is prescribed as an antimalarial prevention drug and to treat diseases such as rheumatoid arthritis, and systemic lupus erythematosus. Recently, Coronavirus (COVID-19) treatment was authorized by national and international medical organizations by chloroquine and hydroxychloroquine in certain hospitalized patients. However, it is considered as an unproven hypothesis for treating COVID-19 which even itself must be investigated. Consequently, the high risk of natural water contamination due to the large production and utilization of HCQ is a key issue to overcome urgently. In fact, in Brazil, the COVID-19 kit (hydroxychloroquine and/or ivermectin) has been indicated as pre-treatment, and consequently, several people have used these drugs, for longer periods, converting them in emerging water pollutants when these are excreted and released to aquatic environments. For this reason, the development of tools for monitoring HCQ concentration in water and the treatment of polluted effluents is needed to minimize its hazardous effects. Then, in this study, an electrochemical measuring device for its environmental application on HCQ control was developed. A raw cork-graphite electrochemical sensor was prepared and a simple differential pulse voltammetric (DPV) method was used for the quantitative determination of HCQ. Results indicated that the electrochemical device exhibited a clear current response, allowing one to quantify the analyte in the 5-65 mu M range. The effectiveness of the electrochemical sensor was tested in different water matrices (in synthetic and real) and lower HCQ concentrations were detected. When comparing electrochemical determinations and spectrophotometric measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of this sensor in different environmental applications. (AU)

Processo FAPESP: 19/13113-4 - Processos foto (eletro) catalíticos e fotoeletro-fenton para eliminar contaminantes emergentes de águas de rejeito industriais
Beneficiário:Maria Valnice Boldrin
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 14/50945-4 - INCT 2014: Instituto Nacional de Tecnologias Alternativas para Detecção, Avaliação Toxicológica e Remoção de Micropoluentes e Radioativos
Beneficiário:Maria Valnice Boldrin
Modalidade de apoio: Auxílio à Pesquisa - Temático