Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

The Ring-LWE Problem in Lattice-Based Cryptography: The Case of Twisted Embeddings

Texto completo
Autor(es):
Ortiz, Jheyne N. [1] ; de Araujo, Robson R. [2] ; Aranha, Diego F. [3] ; Costa, Sueli I. R. [4] ; Dahab, Ricardo [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Comp, BR-13083852 Campinas - Brazil
[2] Fed Inst Sao Paulo, BR-11533160 Cubatao - Brazil
[3] Aarhus Univ, Dept Comp Sci, DK-8200 Aarhus - Denmark
[4] Univ Estadual Campinas, Inst Math Stat & Comp Sci, BR-13083859 Campinas - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Entropy; v. 23, n. 9 SEP 2021.
Citações Web of Science: 0
Resumo

Several works have characterized weak instances of the Ring-LWE problem by exploring vulnerabilities arising from the use of algebraic structures. Although these weak instances are not addressed by worst-case hardness theorems, enabling other ring instantiations enlarges the scope of possible applications and favors the diversification of security assumptions. In this work, we extend the Ring-LWE problem in lattice-based cryptography to include algebraic lattices, realized through twisted embeddings. We define the class of problems Twisted Ring-LWE, which replaces the canonical embedding by an extended form. By doing so, we allow the Ring-LWE problem to be used over maximal real subfields of cyclotomic number fields. We prove that Twisted Ring-LWE is secure by providing a security reduction from Ring-LWE to Twisted Ring-LWE in both search and decision forms. It is also shown that the twist factor does not affect the asymptotic approximation factors in the worst-case to average-case reductions. Thus, Twisted Ring-LWE maintains the consolidated hardness guarantee of Ring-LWE and increases the existing scope of algebraic lattices that can be considered for cryptographic applications. Additionally, we expand on the results of Ducas and Durmus (Public-Key Cryptography, 2012) on spherical Gaussian distributions to the proposed class of lattices under certain restrictions. As a result, sampling from a spherical Gaussian distribution can be done directly in the respective number field while maintaining its format and standard deviation when seen in R-n via twisted embeddings. (AU)

Processo FAPESP: 13/25977-7 - Segurança e confiabilidade da informação: teoria e prática
Beneficiário:Marcelo Firer
Modalidade de apoio: Auxílio à Pesquisa - Temático