Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Water Particles Monitoring in the Atacama Desert: SPC Approach Based on Proportional Data

Texto completo
Autor(es):
Fonseca, Anderson [1] ; Ferreira, Paulo Henrique [1] ; do Nascimento, Diego Carvalho [2] ; Fiaccone, Rosemeire [1] ; Ulloa-Correa, Christopher [3] ; Garcia-Pina, Ayon [3] ; Louzada, Francisco [4]
Número total de Autores: 7
Afiliação do(s) autor(es):
[1] Univ Fed Bahia, Dept Stat, BR-40170110 Salvador, BA - Brazil
[2] Univ Atacama, Fac Ingn, Dept Matemat, Copiapo 1530000 - Chile
[3] Univ Atacama, Lab Invest Criosfera & Aguas, IDICTEC, Copiapo 1530000 - Chile
[4] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: AXIOMS; v. 10, n. 3 SEP 2021.
Citações Web of Science: 0
Resumo

Statistical monitoring tools are well established in the literature, creating organizational cultures such as Six Sigma or Total Quality Management. Nevertheless, most of this literature is based on the normality assumption, e.g., based on the law of large numbers, and brings limitations towards truncated processes as open questions in this field. This work was motivated by the register of elements related to the water particles monitoring (relative humidity), an important source of moisture for the Copiapo watershed, and the Atacama region of Chile (the Atacama Desert), and presenting high asymmetry for rates and proportions data. This paper proposes a new control chart for interval data about rates and proportions (symbolic interval data) when they are not results of a Bernoulli process. The unit-Lindley distribution has many interesting properties, such as having only one parameter, from which we develop the unit-Lindley chart for both classical and symbolic data. The performance of the proposed control chart is analyzed using the average run length (ARL), median run length (MRL), and standard deviation of the run length (SDRL) metrics calculated through an extensive Monte Carlo simulation study. Results from the real data applications reveal the tool's potential to be adopted to estimate the control limits in a Statistical Process Control (SPC) framework. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 20/09174-5 - Recomendação de itens de interesse da BeeNet
Beneficiário:Diego Carvalho do Nascimento
Modalidade de apoio: Bolsas no Brasil - Programa Capacitação - Treinamento Técnico