Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Gain-assisted optical tweezing of plasmonic and large refractive index microspheres

Texto completo
Autor(es):
Ali, R. [1] ; Dutra, R. S. [2] ; Pinheiro, F. A. [3] ; Maia Neto, P. A. [3]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Gleb Wataghin Phys Inst, Appl Phys Dept, BR-13083859 Campinas, SP - Brazil
[2] Inst Fed Educ Ciencia & Tecnol, LISComp IFRJ, Rua Sebastiao de Lacerda, BR-26600000 Paracambi, RJ - Brazil
[3] Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528, BR-21941972 Rio De Janeiro, RJ - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Journal of Optics; v. 23, n. 11 NOV 2021.
Citações Web of Science: 1
Resumo

We have theoretically investigated optical tweezing of gain-functionalized microspheres using a highly focused single beam in the nonparaxial regime. We employ the Mie-Debye theory of optical tweezers to calculate the optical force acting on homogeneous and core-shell Mie microspheres with gain. We demonstrate that the optical gain plays a crucial role in optical manipulation, especially to optimize the restoring force and thus allowing for trapping of large refractive index and plasmonic particles. Indeed, we demonstrate that one can trap such particles, which is usually not possible in the case of passive media, by functionalizing them with an optical gain material. We show that by varying the value of the gain, which can be realized by changing the pump power, one can not only achieve trapping but also manipulate the equilibrium position of the tweezed particle. Altogether, our findings open new avenues for gain-assisted optomechanics, where gain functionalized systems could facilitate optical trapping and manipulation of plasmonic nanoparticles in particular, with potential applications in self-assembling of nanoparticle suspensions and on a chip. (AU)

Processo FAPESP: 14/50983-3 - INCT 2014: fluidos complexos
Beneficiário:Antonio Martins Figueiredo Neto
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/03131-2 - Interação entre luz e som em microcavidades ópticas
Beneficiário:Rfaqat Ali
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado