Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Different Formulations to Solve the Giesekus Model for Flow between Two Parallel Plates

Texto completo
Autor(es):
da Silva Furlan, Laison Junio [1] ; de Araujo, Matheus Tozo [1] ; Brandi, Analice Costacurta [2] ; de Almeida Cruz, Daniel Onofre [3] ; de Souza, Leandro Franco [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Appl Math & Stat, BR-13566590 Sao Carlos - Brazil
[2] Sao Paulo State Univ, Dept Math & Comp Sci, BR-19060900 Presidente Prudente - Brazil
[3] Univ Fed Rio de Janeiro, Dept Mech Engn, BR-21941972 Rio De Janeiro - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: APPLIED SCIENCES-BASEL; v. 11, n. 21 NOV 2021.
Citações Web of Science: 0
Resumo

This work presents different formulations to obtain the solution for the Giesekus constitutive model for a flow between two parallel plates. The first one is the formulation based on work by Schleiniger, G; Weinacht, R.J., {[}Journal of Non-Newtonian Fluid Mechanics, 40, 79-102 (1991)]. The second formulation is based on the concept of changing the independent variable to obtain the solution of the fluid flow components in terms of this variable. This change allows the flow components to be obtained analytically, with the exception of the velocity profile, which is obtained using a high-order numerical integration method. The last formulation is based on the numerical simulation of the governing equations using high-order approximations. The results show that each formulation presented has advantages and disadvantages, and it was investigated different viscoelastic fluid flows by varying the dimensionless parameters, considering purely polymeric fluid flow, closer to purely polymeric fluid flow, solvent contribution on the mixture of fluid, and high Weissenberg numbers. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs