Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A Private Strategy for Workload Forecasting on Large-Scale Wireless Networks

Texto completo
Autor(es):
Pisa, Pedro Silveira [1, 2] ; Costa, Bernardo [2] ; Goncalves, Jessica Alcantara [2] ; Varela de Medeiros, Dianne Scherly [1] ; Mattos, Diogo Menezes Ferrazani [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Fed Fluminense UFF, PPGEET TCE IC, LabGen MidiaCom, BR-24210240 Niteroi, RJ - Brazil
[2] Solvimm, BR-20090003 Rio De Janeiro - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: INFORMATION; v. 12, n. 12 DEC 2021.
Citações Web of Science: 0
Resumo

The growing convergence of various services characterizes wireless access networks. Therefore, there is a high demand for provisioning the spectrum to serve simultaneous users demanding high throughput rates. The load prediction at each access point is mandatory to allocate resources and to assist sophisticated network designs. However, the load at each access point varies according to the number of connected devices and traffic characteristics. In this paper, we propose a load estimation strategy based on a Markov's Chain to predict the number of devices connected to each access point on the wireless network, and we apply an unsupervised machine learning model to identify traffic profiles. The main goals are to determine traffic patterns and overload projections in the wireless network, efficiently scale the network, and provide a knowledge base for security tools. We evaluate the proposal in a large-scale university network, with 670 access points spread over a wide area. The collected data is de-identified, and data processing occurs in the cloud. The evaluation results show that the proposal predicts the number of connected devices with 90% accuracy and discriminates five different user-traffic profiles on the load of the wireless network. (AU)

Processo FAPESP: 18/23062-5 - MEGACHAIN: blockchain para integração, privacidade e auditoria de sistemas de megacidades
Beneficiário:Célio Vinicius Neves de Albuquerque
Modalidade de apoio: Auxílio à Pesquisa - Regular