Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Fault and fracture study by incorporating borehole image logs and supervised neural network applied to the 3D seismic attributes: a case study of pre-salt carbonate reservoir, Santos Basin, Brazil

Texto completo
Autor(es):
Babasafari, Amir Abbas [1] ; Chinelatto, Guilherme Furlan [1] ; Vidal, Alexandre Campane [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Ctr Petr Studies, BR-13083872 Campinas, SP - Brazil
[2] Univ Estadual Campinas, Geosci Inst, Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: PETROLEUM SCIENCE AND TECHNOLOGY; JAN 2022.
Citações Web of Science: 0
Resumo

Fractures play a significant role in the development and production phases of carbonate reservoirs. Quantitative interpretation of fractures not only enhances reservoir models but also reduces the drilling risk and optimizes well design. In this study, we attempt to predict the fracture density map by integrating well and seismic data along with maximum horizontal stress identification. To this end, we propose a workflow with a set of machine learning approaches. First, 3D seismic data is conditioned after the migration processing sequence and the main faults and horizons are interpreted. Next, a number of curvature and coherence attributes are created for a supervised neural network technique to generate new seismic-based discontinuity attribute. Using a geostatistical method to incorporate the interpreted dip and azimuth attributes from well image logs and 3D seismic discontinuity attribute, the fracture density map is predicted and the results validated with a blind well. Finally, we evaluate the strike azimuth of possible open fractures based on the stress regime analysis, from which two distinctive zones are identified. There are, however, some limitations in this study. The predicted fracture density map can be employed to build a discrete fracture network, update dual porosity and permeability estimation, and identify sweet spots. (AU)

Processo FAPESP: 17/15736-3 - Centro de Pesquisa em Engenharia em Reservatórios e Gerenciamento de Produção de Petróleo
Beneficiário:Denis José Schiozer
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia