Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Anomaly Detection Based on Zero-Shot Outlier Synthesis and Hierarchical Feature Distillation

Texto completo
Autor(es):
Rivera, Adin Ramirez [1] ; Khan, Adil [2] ; Bekkouch, Imad Eddine Ibrahim [2] ; Sheikh, Taimoor Shakeel [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Comp, BR-13083970 Campinas, SP - Brazil
[2] Innopolis Univ, Inst Data Sci & Artificial Intelligence, Innopolis 420500 - Russia
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS; v. 33, n. 1, p. 281-291, JAN 2022.
Citações Web of Science: 2
Resumo

Anomaly detection suffers from unbalanced data since anomalies are quite rare. Synthetically generated anomalies are a solution to such ill or not fully defined data. However, synthesis requires an expressive representation to guarantee the quality of the generated data. In this article, we propose a two-level hierarchical latent space representation that distills inliers' feature descriptors {[}through autoencoders (AEs)] into more robust representations based on a variational family of distributions (through a variational AE) for zero-shot anomaly generation. From the learned latent distributions, we select those that lie on the outskirts of the training data as synthetic-outlier generators. Also, we synthesize from them, i.e., generate negative samples without seen them before, to train binary classifiers. We found that the use of the proposed hierarchical structure for feature distillation and fusion creates robust and general representations that allow us to synthesize pseudo outlier samples. Also, in turn, train robust binary classifiers for true outlier detection (without the need for actual outliers during training). We demonstrate the performance of our proposal on several benchmarks for anomaly detection. (AU)

Processo FAPESP: 19/07257-3 - Aprendendo representações através de modelos generativos profundos em vídeo
Beneficiário:Gerberth Adín Ramírez Rivera
Modalidade de apoio: Auxílio à Pesquisa - Regular