Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

uperdiffusion in self-reinforcing run-and-tumble model with rest

Texto completo
Autor(es):
Fedotov, Sergei [1] ; Han, Daniel [2] ; Ivanov, Alexey O. [3] ; da Silva, Marco A. A. [4]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs - England
[2] MRC Lab Mol Biol, Cambridge CB2 0QH - England
[3] Ural Fed Univ, Dept Theoret & Math Phys, Ural Math Ctr, Ekaterinburg 620000 - Russia
[4] Univ Sao Paulo, Fac Ciencias Farmaceut Ribeirao Preto, USP, FCFRP, Ribeirao Preto - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: PHYSICAL REVIEW A; v. 105, n. 1 JAN 27 2022.
Citações Web of Science: 0
Resumo

This paper introduces a run-and-tumble model with self-reinforcing directionality and rests. We derive a single governing hyperbolic partial differential equation for the probability density of random-walk position, from which we obtain the second moment in the long-time limit. We find the criteria for the transition between superdiffusion and diffusion caused by the addition of a rest state. The emergence of superdiffusion depends on both the parameter representing the strength of self-reinforcement and the ratio between mean running and resting times. The mean running time must be at least 2/3 of the mean resting time for superdiffusion to be possible. Monte Carlo simulations validate this theoretical result. This work demonstrates the possibility of extending the telegrapher's (or Cattaneo) equation by adding self-reinforcing directionality so that superdiffusion occurs even when rests are introduced. (AU)

Processo FAPESP: 18/15308-4 - Caminhantes aleatórios com memória fortemente correlacionada e aplicações na biologia
Beneficiário:Marco Antonio Alves da Silva
Modalidade de apoio: Auxílio à Pesquisa - Regular