Busca avançada
Ano de início
Entree


An Adaptive and Near Parameter-Free BRKGA Using Q-Learning Method

Texto completo
Autor(es):
Chaves, Antonio Augusto ; Nogueira Lorena, Luiz Henrique ; IEEE
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: 2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021); v. N/A, p. 8-pg., 2021-01-01.
Resumo

The Biased Random-Key Genetic Algorithm (BRKGA) is an efficient metaheuristic to solve combinatorial optimization problems but requires parameter tuning so the intensification and diversification of the algorithm work in a balanced way. There is, however, not only one optimal parameter configuration, and the best configuration may differ according to the stages of the evolutionary process. Hence, in this research paper, a BRKGA with Q-Learning algorithm (BRKGA-QL) is proposed. The aim is to control the algorithm parameters during the evolutionary process using Reinforcement Learning, indicating the best configuration at each stage. In the experiments, BRKGA-QL was applied to the symmetric Traveling Salesman Problem, and the results show the efficiency and competitiveness of the proposed algorithm. (AU)

Processo FAPESP: 18/15417-8 - Desenvolvimento de uma meta-heurística híbrida com fluxo de controle e parâmetros adaptativos
Beneficiário:Antônio Augusto Chaves
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores - Fase 2