| Texto completo | |
| Autor(es): |
Rodrigues, Joany
;
Pinheiro, Gustavo
;
Carmo, Diedre
;
Rittner, Leticia
;
Romero, E
;
Costa, ET
;
Brieva, J
;
Rittner, L
;
Linguraru, MG
;
Lepore, N
Número total de Autores: 10
|
| Tipo de documento: | Artigo Científico |
| Fonte: | 17TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS; v. 12088, p. 10-pg., 2021-01-01. |
| Resumo | |
Corpus callosum (CC) segmentation is an important first step of MRI-based analysis, however most available automated methods and tools perform its segmentation on the midsagittal slice only. Additionally, the few volumetric CC segmentation methods available work on T1-weighted images, what requires an additional step of registering the T1 segmentation mask over diffusion tensor images (DTI) when conducting any DTI-based analysis. This work presents a volumetric segmentation method of the corpus callosum using a modified U-Net on diffusion tensor data, such as Fractional Anisotropy (FA), Mean Difusivity (MD) and Mode of Anisotropy (MO). The model was trained on 70 DTI acquisitions and tested on a dataset composed of 14 acquisitions with manual volumetric segmentation. Results indicate that using multiple DTI maps as input channels is better than using a single one. The best model obtained a mean dice of 83,29% on the test dataset, surpassing the performance of available softwares. (AU) | |
| Processo FAPESP: | 13/07559-3 - Instituto Brasileiro de Neurociência e Neurotecnologia - BRAINN |
| Beneficiário: | Fernando Cendes |
| Modalidade de apoio: | Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs |
| Processo FAPESP: | 19/21964-4 - Diagnóstico de doenças pulmonares e COVID a partir de imagens de tomografia computadorizada usando aprendizado profundo explicável |
| Beneficiário: | Diedre Santos do Carmo |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |