Busca avançada
Ano de início
Entree


EEG functional connectivity and deep learning for automatic diagnosis of brain disorders: Alzheimer's disease and schizophrenia

Texto completo
Autor(es):
Alves, Caroline L. ; Pineda, Aruane M. ; Roster, Kirstin ; Thielemann, Christiane ; Rodrigues, Francisco A.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF PHYSICS-COMPLEXITY; v. 3, n. 2, p. 13-pg., 2022-06-01.
Resumo

Mental disorders are among the leading causes of disability worldwide. The first step in treating these conditions is to obtain an accurate diagnosis. Machine learning algorithms can provide a possible solution to this problem, as we describe in this work. We present a method for the automatic diagnosis of mental disorders based on the matrix of connections obtained from EEG time series and deep learning. We show that our approach can classify patients with Alzheimer's disease and schizophrenia with a high level of accuracy. The comparison with the traditional cases, that use raw EEG time series, shows that our method provides the highest precision. Therefore, the application of deep neural networks on data from brain connections is a very promising method for the diagnosis of neurological disorders. (AU)

Processo FAPESP: 19/23293-0 - Predição e inferência em sistemas complexos
Beneficiário:Francisco Aparecido Rodrigues
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 19/26595-7 - Modelagem de doenças transmitidas por vetores
Beneficiário:Kirstin Roster
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 19/22277-0 - Modelagem de dinâmicas sociais interagentes em redes complexas
Beneficiário:Aruane Mello Pineda
Modalidade de apoio: Bolsas no Brasil - Doutorado