Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do SciELO, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

CLASSIFICATION OF SUGARCANE YIELDS ACCORDING TO SOIL FERTILITY PROPERTIES USING SUPERVISED MACHINE LEARNING METHODS

Texto completo
Autor(es):
Jhonnatan Yepes [1] ; Gian Oré [2] ; Marlon S. Alcântara [3] ; Hugo E. Hernandez-Figueroa [4] ; Bárbara Teruel [5]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] University of Campinas. School of Agricultural Engineering - Brasil
[2] University of Campinas. School of Electrical and Computer Engineering - Brasil
[3] University of Campinas. School of Electrical and Computer Engineering - Brasil
[4] University of Campinas. School of Electrical and Computer Engineering - Brasil
[5] University of Campinas. School of Agricultural Engineering - Brasil
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: Engenharia Agrícola; v. 42, n. 5 2022-11-14.
Resumo

ABSTRACT Action planning and decision-making in the sugarcane management chain depend on yield estimates, which, in turn, vary with the soil. This study aimed to describe an applicable method of classifying sugarcane productivity into three categories, based on soil properties (medium, low, and high), determining which is most associated with biomass production. To this end, we applied the machine learning methods Naïve Bayes, Decision Trees, and Random Forest, as they proved to be useful tools for faster and more accurate results. Our results indicate that Random Forest is the most suitable for classifying all yield categories, and Naïve Bayes had good results for classification into “medium” and “low” and potential for solving multiclass problems in agriculture. Organic matter was the property most closely related to sugarcane biomass yield by the Random Forest and Decision Trees algorithms. The methods described can be used to obtain subsidies for sugarcane chain management, contributing to more sustainable decisions. (AU)

Processo FAPESP: 18/00601-8 - Radar de sensoriamento remoto transportado por drone
Beneficiário:Dieter Lubeck
Modalidade de apoio: Auxílio à Pesquisa - Pesquisa Inovativa em Pequenas Empresas - PIPE
Processo FAPESP: 17/19416-3 - Radar transportado por drone para agricultura de precisão na cana de açúcar
Beneficiário:Hugo Enrique Hernández Figueroa
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE