Busca avançada
Ano de início
Entree


Symbol detection in online handwritten graphics using Faster R-CNN

Texto completo
Autor(es):
Julca-Aguilar, Frank D. ; Hirata, Nina S. T. ; IEEE
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: 2018 13TH IAPR INTERNATIONAL WORKSHOP ON DOCUMENT ANALYSIS SYSTEMS (DAS); v. N/A, p. 6-pg., 2018-01-01.
Resumo

Symbol detection techniques in online handwritten graphics (e.g. diagrams and mathematical expressions) consist of methods specifically designed for a single graphic type. In this work, we evaluate the Faster R-CNN object detection algorithm as a general method for detection of symbols in handwritten graphics. We evaluate different configurations of the Faster R-CNN method, and point out issues relative to the handwritten nature of the data. Considering the online recognition context, we evaluate efficiency and accuracy trade-offs of using Deep Neural Networks of different complexities as feature extractors. We evaluate the method on publicly available flowchart and mathematical expression (CROHME-2016) datasets. Results show that Faster R-CNN can be effectively used on both datasets, enabling the possibility of developing general methods for symbol detection, and furthermore, general graphic understanding methods that could be built on top of the algorithm. (AU)

Processo FAPESP: 16/06020-1 - Combinação de operadores no TRIOSLib
Beneficiário:Frank Dennis Julca Aguilar
Modalidade de apoio: Bolsas no Brasil - Programa Capacitação - Treinamento Técnico
Processo FAPESP: 15/17741-9 - Combinação de características locais e globais em aprendizagem de operadores de imagens
Beneficiário:Nina Sumiko Tomita Hirata
Modalidade de apoio: Auxílio à Pesquisa - Regular