Busca avançada
Ano de início
Entree


Numerical verification of sharp corner behavior for Giesekus and Phan-Thien-Tanner fluids

Texto completo
Autor(es):
Evans, J. D. ; Palhares Junior, I. L. ; Oishi, C. M. ; Ruano Neto, F.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: Physics of Fluids; v. 34, n. 11, p. 28-pg., 2022-11-01.
Resumo

We verify numerically the theoretical stress singularities for two viscoelastic models that occur at sharp corners. The models considered are the Giesekus and Phan-Tien-Tanner (PTT), both of which are shear thinning and are able to capture realistic polymer behaviors. The theoretical asymptotic behavior of these two models at sharp corners has previously been found to involve an integrable solvent and polymer elastic stress singularity, along with narrow elastic stress boundary layers at the walls of the corner. We demonstrate here the validity of these theoretical results through numerical simulation of the classical contraction flow and analyzing the 270 degrees corner. Numerical results are presented, verifying both the solvent and polymer stress singularities, as well as the dominant terms in the constitutive equations supporting the elastic boundary layer structures. For comparison at Weissenberg order one, we consider both the Cartesian stress formulation and the alternative natural stress formulation of the viscoelastic constitutive equations. Numerically, it is shown that the natural stress formulation gives increased accuracy and convergence behavior at the stress singularity and, moreover, encounters no upper Weissenberg number limitation in the global flow simulation for sufficiently large solvent viscosity fraction. The numerical simulations with the Cartesian stress formulation cannot reach such high Weissenberg numbers and run into convergence failure associated with the so-called high Weissenberg number problem. (C) 2022 Author(s). (AU)

Processo FAPESP: 18/22242-0 - Escoamentos com superfície livre de fluidos complexos
Beneficiário:Murilo Francisco Tome
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 21/13833-7 - Métodos orientados por dados e aprendizado de máquina em mecânica dos fluidos não-Newtonianos
Beneficiário:Cassio Machiaveli Oishi
Modalidade de apoio: Bolsas no Exterior - Pesquisa
Processo FAPESP: 21/05727-2 - Análise numérica e implementações computacionais de equações constitutivas de escoamentos não-newtonianos
Beneficiário:Fabiano Ruano Neto
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs