Texto completo | |
Autor(es): |
Candido, Leandro
Número total de Autores: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | Colloquium Mathematicum; v. N/A, p. 13-pg., 2022-11-14. |
Resumo | |
We investigate the geometry of C(K, X) and too(X) spaces through complemented subspaces of the form ((R) i,Gamma Xi)c0. For Banach spaces X and Y, we prove that if too(X) has a complemented subspace isomorphic to c0(Y ), then, for some n is an element of N, Xn has a subspace isomorphic to c0(Y ). If K and L are Hausdorff compact spaces and X and Y are Banach spaces having no subspace isomorphic to c0 we further prove the following: (1) If C(K) similar to c0(C(K)) and C(L) similar to c0(C(L)) and too(C(K, X)) similar to too(C(L, Y )), then K and L have the same cardinality. (2) If K and L are infinite and metrizable and too(C(K, X)) similar to too(C(L, Y )), then C(K) is isomorphic to C(L). (AU) | |
Processo FAPESP: | 16/25574-8 - Geometria dos espaços de Banach |
Beneficiário: | Valentin Raphael Henri Ferenczi |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |