Busca avançada
Ano de início
Entree


Machine learning and image processing to monitor strain and tensile forces with mechanochromic sensors

Texto completo
Autor(es):
de Castro, Lucas D. C. ; Scabini, Leonardo ; Ribas, Lucas C. ; Bruno, Odemir M. ; Oliveira Jr, Osvaldo N.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: EXPERT SYSTEMS WITH APPLICATIONS; v. 212, p. 7-pg., 2023-02-01.
Resumo

A computer vision (CV) system is proposed for real-time prediction of strain by monitoring the color-changing feature of mechanochromic sensors. Pictures of the sensors subjected to calibration tensile tests were treated with standard image processing methods and analyzed using supervised machine learning (ML) algorithms. Visual strain sensing was demonstrated by linear regression models capable of learning a relation between the applied strain and the reflected structural color. The ElasticNet regression model provided the highest accuracy in the strain prediction task, with a remarkable performance in monitoring real-time strain variation of sensors during a tensile-relaxion cycle. Using calibration curves, the predicted strain can also be employed for estimating the tensile force applied on the mechanochromic sensors. Taken together these results point to potential intelligent systems for noninvasive in-situ visual monitoring of deformations and tensions. (AU)

Processo FAPESP: 20/02938-0 - Padrões coloridos baseados em cristais fotônicos bioinspirados para aplicações mecanocromáticas
Beneficiário:Lucas Daniel Chiba de Castro
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 16/18809-9 - Deep learning e redes complexas aplicados em visão computacional
Beneficiário:Odemir Martinez Bruno
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE
Processo FAPESP: 18/22214-6 - Rumo à convergência de tecnologias: de sensores e biossensores à visualização de informação e aprendizado de máquina para análise de dados em diagnóstico clínico
Beneficiário:Osvaldo Novais de Oliveira Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 14/08026-1 - Visão artificial e reconhecimento de padrões aplicados em plasticidade vegetal
Beneficiário:Odemir Martinez Bruno
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 21/07289-2 - Aprendizado de representações usando redes neurais artificiais e redes complexas com aplicações em sensores e biossensores
Beneficiário:Lucas Correia Ribas
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 19/07811-0 - Redes neurais artificiais e redes complexas: um estudo integrativo de propriedades topológicas e reconhecimento de padrões
Beneficiário:Leonardo Felipe dos Santos Scabini
Modalidade de apoio: Bolsas no Brasil - Doutorado