Busca avançada
Ano de início
Entree


Full Motion Focus: Convolutional Module for Improved Left Ventricle Segmentation Over 4D MRI

Texto completo
Autor(es):
Lima, Daniel M. ; Graves, Catharine, V ; Gutierrez, Marco A. ; Brandoli, Bruno ; Rodrigues Jr, Jose F. ; Sclaroff, S ; Distante, C ; Leo, M ; Farinella, GM ; Tombari, F
Número total de Autores: 10
Tipo de documento: Artigo Científico
Fonte: IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT I; v. 13231, p. 13-pg., 2022-01-01.
Resumo

Magnetic Resonance Imaging (MRI) is a widely known medical imaging technique used to assess the heart function. Over Cardiac MRI (CMR) images, Deep Learning (DL) models perform several tasks with good efficacy, such as segmentation, estimation, and detection of diseases. Such models can produce even better results when their input is a Region of Interest (RoI), that is, a segment of the image with more analytical potential for diagnosis. Accordingly, we describe Full Motion Focus (FMF), an image processing technique sensitive to the heart motion in a 4D MRI sequence (video) whose principle is to combine static and dynamic image features with a Radial Basis Function (RBF) to highlight the RoI found in the motion field. We experimented FMF with the U-Net convolutional DL architecture over three CMR datasets in the task of Left Ventricle segmentation; we achieved a rate of detection (Recall score) of 99.7% concerning the RoIs, improved the U-Net segmentation (mean Dice score) by 1.7 (p < .001), and improved the overall training speed by 2.5 times (+150%). (AU)

Processo FAPESP: 16/17078-0 - Mineração, indexação e visualização de Big Data no contexto de sistemas de apoio à decisão clínica (MIVisBD)
Beneficiário:Agma Juci Machado Traina
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/11424-0 - Criação de uma infraestrutura de Armazém de Dados para Análise Visual voltada à saúde
Beneficiário:Daniel Mário de Lima
Modalidade de apoio: Bolsas no Brasil - Programa Capacitação - Treinamento Técnico