Busca avançada
Ano de início
Entree


Post-emergence herbicidal activity of nanoatrazine against Alternanthera tenella Colla plants compared to other weed species

Texto completo
Autor(es):
de Sousa, Bruno Teixeira ; Santo Pereira, Anderson do Espirito ; Fraceto, Leonardo Fernandes ; Oliveira, Halley Caixeta ; Dalazen, Giliardi
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: HELIYON; v. 8, n. 7, p. 8-pg., 2022-07-19.
Resumo

The encapsulation of atrazine into poly(epsilon-caprolactone) nanocapsules has been shown to improve the efficiency of the herbicide and decrease its environmental impacts. In the current work, we evaluated the efficiency of nanoatrazine in the post-emergence control of Alternanthera tenella Colla plants and performed a meta-analysis to compare the results with studies already published with other weeds. The first experiment was carried out in the field, where we observed that nanoatrazine (at 200 g a. i. ha(-1)) induced higher inhibition of the maximum quantum efficiency of photosystem II (up to 39%) than conventional atrazine at the same concentration. However, nanoencapsulation did not improve the visually-determined weed control by atrazine. To better understand the response of A. tenella plants to nanoatrazine, a second experiment was carried out in a greenhouse with four-leaf stage plants treated with nano and conventional atrazine at 200, 500, 1000, and 2000 g a. i. ha(-1). Nanoatrazine showed higher efficiency (up to 33%) than commercial atrazine in inhibiting photosystem II activity at all doses until 48 h after application. Again, weed control and plant dry mass did not differ between formulations. From the meta-analysis, it was observed that A. tenella plants showed a response to nanoatrazine that differs from other target species, as the gain in efficiency resulting from the nanoencapsulation was restricted to the short-term analysis, and did not result in better weed control. These results reinforce that the efficiency of nanoatrazine is dependent on the studied species. (AU)

Processo FAPESP: 17/21004-5 - Agricultura, micro/nanotecnologia e ambiente: da avaliação dos mecanismos de ação a estudos de transporte e toxicidade
Beneficiário:Leonardo Fernandes Fraceto
Modalidade de apoio: Auxílio à Pesquisa - Temático