Busca avançada
Ano de início
Entree


CV-C3D: Action Recognition on Compressed Videos with Convolutional 3D Networks

Texto completo
Autor(es):
dos Santos, Samuel Felipe ; Sebe, Nicu ; Almeida, Jurandy ; IEEE
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2019 32ND SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI); v. N/A, p. 7-pg., 2019-01-01.
Resumo

Action recognition in videos has gained substantial attention from the computer vision community due to the wide range of possible applications. Recent works have addressed this problem with deep learning methods. The main limitation of existing approaches is their difficulty to learn temporal dynamics due to the high computational load demanded for processing huge amounts of data required to train a model. To overcome this problem, we propose a Compressed Video Convolutional 3D network (CV-C3D). It exploits information from the compressed representation of a video in order to avoid the high computational cost for fully decoding the video stream. The speed up of the computation enables our network to use 3D convolutions for capturing the temporal context efficiently. Our network has the lowest computational complexity among all the compared approaches. Results of our approach in the task of action recognition on two public benchmarks, UCF-101 and HMDB-51, were comparable to the baselines, with the advantage of running at faster inference speed. (AU)

Processo FAPESP: 17/25908-6 - Aprendizado fracamente supervisionado para análise de vídeos no domínio comprimido em tarefas de recuperação e classificação para alertas visuais
Beneficiário:João Paulo Papa
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE
Processo FAPESP: 18/21837-0 - Entendimento da Atividade Humana com Modelos Discriminativos através da Aprendizagem Profunda em Vídeos Comprimidos
Beneficiário:Jurandy Gomes de Almeida Junior
Modalidade de apoio: Bolsas no Exterior - Pesquisa