Busca avançada
Ano de início
Entree


Epistemic Argumentation with Conditional Probabilities and Labeling Constraints

Texto completo
Autor(es):
de Bona, Glauber ; Nascimento Rocha, Victor Hugo ; Cozman, Fabio Gagliardi ; Cano, A ; DeBock, J ; Miranda, E ; Moral, S
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162; v. 147, p. 10-pg., 2021-01-01.
Resumo

We extend epistemic graphs, a powerful representation language employed in argumentation theory, first, by allowing conditional probabilities in that language. We also offer a new way of interpreting the graph as a set of restrictions based on a selected semantics for the abstract argumentation frameworks. The resulting semantics for epistemic graphs are given by credal sets that we characterize through inequalities. We illustrate the main issues in our proposals by resorting to arguments related to climate change. (AU)

Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia