Busca avançada
Ano de início
Entree


Image quantization as a dimensionality reduction procedure in color and texture feature extraction

Texto completo
Autor(es):
Ponti, Moacir ; Nazare, Tiago S. ; Thume, Gabriela S.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Neurocomputing; v. 173, p. 12-pg., 2016-01-15.
Resumo

The image-based visual recognition pipeline includes a step that converts color images into images with a single channel, obtaining a color-quantized image that can be processed by feature extraction methods. In this paper we explore this step in order to produce compact features that can be used in retrieval and classification systems. We show that different quantization methods produce very different results in terms of accuracy. While compared with more complex methods, this procedure allows the feature extraction in order to achieve a significant dimensionality reduction, while preserving or improving system accuracy. The results indicate that quantization simplify images before feature extraction and dimensionality reduction, producing more compact vectors and reducing system complexity. (C) 2015 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 11/22749-8 - Desafios em visualização exploratória de dados multidimensionais: novos paradigmas, escalabilidade e aplicações
Beneficiário:Luis Gustavo Nonato
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 11/16411-4 - Sistema de múltiplos classificadores em problemas de desbalanceamento de classes e grandes conjuntos de dados
Beneficiário:Moacir Antonelli Ponti
Modalidade de apoio: Auxílio à Pesquisa - Regular