Busca avançada
Ano de início
Entree


Using machine learning and an electronic tongue for discriminating saliva samples from oral cavity cancer patients and healthy individuals

Texto completo
Autor(es):
Mostrar menos -
Braz, Daniel C. ; Neto, Mario Popolin ; Shimizu, Flavio M. ; Sa, Acelino C. ; Lima, Renato S. ; Gobbi, Angelo L. ; Melendez, Matias E. ; Arantes, Lidia M. R. B. ; Carvalho, Andre L. ; Paulovich, Fernando, V ; Oliveira Jr, Osvaldo N.
Número total de Autores: 11
Tipo de documento: Artigo Científico
Fonte: Talanta; v. 243, p. 8-pg., 2022-02-28.
Resumo

The diagnosis of cancer and other diseases using data from non-specific sensors - such as the electronic tongues (e-tongues) -is challenging owing to the lack of selectivity, in addition to the variability of biological samples. In this study, we demonstrate that impedance data obtained with an e-tongue in saliva samples can be used to diagnose cancer in the mouth. Data taken with a single-response microfluidic e-tongue applied to the saliva of 27 individuals were treated with multidimensional projection techniques and non-supervised and supervised machine learning algorithms. The distinction between healthy individuals and patients with cancer on the floor of mouth or oral cavity could only be made with supervised learning. Accuracy above 80% was obtained for the binary classification (YES or NO for cancer) using a Support Vector Machine (SVM) with radial basis function kernel and Random Forest. In the classification considering the type of cancer, the accuracy dropped to ca. 70%. The accuracy tended to increase when clinical information such as alcohol consumption was used in conjunction with the e-tongue data. With the random forest algorithm, the rules to explain the diagnosis could be identified using the concept of Multidimensional Calibration Space. Since the training of the machine learning algorithms is believed to be more efficient when the data of a larger number of patients are employed, the approach presented here is promising for computer-assisted diagnosis. (AU)

Processo FAPESP: 12/15543-7 - Biossensores para detectar Escherichia coli usando o conceito de línguas eletrônicas
Beneficiário:FLAVIO MAKOTO SHIMIZU
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 18/22214-6 - Rumo à convergência de tecnologias: de sensores e biossensores à visualização de informação e aprendizado de máquina para análise de dados em diagnóstico clínico
Beneficiário:Osvaldo Novais de Oliveira Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático