Busca avançada
Ano de início
Entree


PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters

Texto completo
Autor(es):
Sant'Ana, Luis ; Cordeiro, Daniel ; de Camargo, Raphael Y. ; Yahyapour, R
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: EURO-PAR 2019: PARALLEL PROCESSING; v. 11725, p. 13-pg., 2019-01-01.
Resumo

Efficient usage of Heterogeneous clusters containing combinations of CPUs and accelerators, such as GPUs and Xeon Phi boards requires balancing the computational load among them. Their relative processing speed for each target application is not available in advance and must be computed at runtime. Also, dynamic changes in the environment may cause these processing speeds to change during execution. We propose a Profile-based Load-Balancing algorithm for Heterogeneous Accelerator Clusters (PLB-HAC), which constructs a performance curve model for each resource at runtime and continuously adapt it to changing conditions. It dispatches execution blocks asynchronously, preventing synchronization overheads and other idleness periods due to imbalances. We evaluated the algorithm using data clustering, matrix multiplication, and bioinformatics applications and compared with existing load-balancing algorithms. PLB-HAC obtained the highest performance gains with more heterogeneous clusters and larger problems sizes, where a more refined load-distribution is required. (AU)

Processo FAPESP: 14/50937-1 - INCT 2014: da Internet do Futuro
Beneficiário:Fabio Kon
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 13/26644-1 - Modelos de programação e algoritmos para a execução eficiente de aplicações paralelas em aglomerados heterogêneos
Beneficiário:Raphael Yokoingawa de Camargo
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/24485-9 - Internet do futuro aplicada a cidades inteligentes
Beneficiário:Fabio Kon
Modalidade de apoio: Auxílio à Pesquisa - Temático