Busca avançada
Ano de início
Entree


Qualitative data clustering: a new Integer Linear Programming model

Texto completo
Autor(es):
Nogueira Lorena, Luiz Henrique ; Quiles, Marcos Goncalves ; Nogueira Lorena, Luiz Antonio ; de Carvalho, Andre C. P. L. F. ; Cespedes, Juliana Garcia ; IEEE
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN); v. N/A, p. 8-pg., 2019-01-01.
Resumo

Qualitative data clustering is a fundamental data analysis task, with applications in many areas, like medicine, sociology, and economics. An appealing way to deal with this task is via Integer Linear Programming, as it avoids inappropriate inferences by the final user. This approach has two main advantages: the data are directly used, without the need of being converted to quantitative values, and the optimal number of clusters is automatically obtained by solving the optimization problem. However, it might create large and redundant models, which can limit the size of the problems it can be applied. Recently, models that are more compact and able to avoid some redundancy have been proposed in the literature. These models consume less memory and are faster to obtain the optimal solution set. In this study, a new model is introduced and compared with the state-of-the-art alternatives using datasets from different application domains. Empirical results show that the new model outperforms its predecessors, achieving the optimal solution set with lower computational time and memory consumption. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 11/18496-7 - Aprendizado semi-supervisionado dinâmico e ativo baseado em redes complexas
Beneficiário:Marcos Gonçalves Quiles
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores