Busca avançada
Ano de início
Entree


Weakly Supervised Learning Guided by Activation Mapping Applied to a Novel Citrus Pest Benchmark

Texto completo
Autor(es):
Bollis, Edson ; Pedrini, Helio ; Avila, Sandra ; IEEE COMP SOC
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020); v. N/A, p. 10-pg., 2020-01-01.
Resumo

Pests and diseases are relevant factors for production losses in agriculture and, therefore, promote a huge investment in the prevention and detection of its causative agents. In many countries, Integrated Pest Management is the most widely used process to prevent and mitigate the damages caused by pests and diseases in citrus crops. However, its results are credited by humans who visually inspect the orchards in order to identify the disease symptoms, insects and mite pests. In this context, we design a weakly supervised learning process guided by saliency maps to automatically select regions of interest in the images, significantly reducing the annotation task. In addition, we create a large citrus pest benchmark composed of positive samples (six classes of mite species) and negative samples. Experiments conducted on two large datasets demonstrate that our results are very promising for the problem of pest and disease classification in the agriculture field. (AU)

Processo FAPESP: 13/08293-7 - CECC - Centro de Engenharia e Ciências Computacionais
Beneficiário:Munir Salomao Skaf
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/12646-3 - Déjà vu: coerência temporal, espacial e de caracterização de dados heterogêneos para análise e interpretação de integridade
Beneficiário:Anderson de Rezende Rocha
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/16246-0 - Análise de mídias sensíveis usando arquiteturas de aprendizado profundo
Beneficiário:Sandra Eliza Fontes de Avila
Modalidade de apoio: Auxílio à Pesquisa - Regular