Busca avançada
Ano de início
Entree


Training Neurofuzzy Networks with Participatory Learning

Autor(es):
Hell, Michel ; Ballini, Rosangela ; Costa, Pyramo, Jr. ; Gomide, Fernando ; Stepnicka, M ; Novak, V ; Bodenhofer, U
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: NEW DIMENSIONS IN FUZZY LOGIC AND RELATED TECHNOLOGIES, VOL II, PROCEEDINGS; v. N/A, p. 2-pg., 2007-01-01.
Resumo

This paper introduces a new approach to adjust a class of neurofuzzy networks based on the idea of participatory learning. Participatory learning is a mean to learn and revise beliefs based on what is already known or believed. The performance of the approach is verified with the Box and Jenkins gas furnace modeling problem, and with a short-term load forecasting problem using actual data. Comparisons with alternative training procedures suggested in the literature are included to shown the effectiveness of participatory learning to train neurofuzzy networks. (AU)

Processo FAPESP: 03/10019-9 - Metodologias de previsão para sistemas de energia
Beneficiário:Fernando Antonio Campos Gomide
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 03/05042-1 - Abordagem neurofuzzy para modelagem de sistemas dinamicos nao lineares.
Beneficiário:Michel Bortolini Hell
Modalidade de apoio: Bolsas no Brasil - Doutorado