Busca avançada
Ano de início
Entree


Unsupervised Manifold Learning for Video Genre Retrieval

Texto completo
Autor(es):
Almeida, Jurandy ; Pedronette, Daniel C. G. ; Penatti, Otavio A. B. ; BayroCorrochano, E ; Hancock, E
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014; v. 8827, p. 9-pg., 2014-01-01.
Resumo

This paper investigates the perspective of exploiting pairwise similarities to improve the performance of visual features for video genre retrieval. We employ manifold learning based on the reciprocal neighborhood and on the authority of ranked lists to improve the retrieval of videos considering their genre. A comparative analysis of different visual features is conducted and discussed. We experimentally show in the dataset of 14,838 videos from the MediaEval benchmark that we can achieve considerable improvements in results. In addition, we also evaluate how the late fusion of different visual features using the same manifold learning scheme can improve the retrieval results. (AU)

Processo FAPESP: 13/08645-0 - Reclassificação e agregação de listas para tarefas de recuperação de imagens
Beneficiário:Daniel Carlos Guimarães Pedronette
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores