Busca avançada
Ano de início
Entree


Lazy Multi-label Learning Algorithms Based on Mutuality Strategies

Texto completo
Autor(es):
Cherman, Everton Alvares ; Spolaor, Newton ; Valverde-Rebaza, Jorge ; Monard, Maria Carolina
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS; v. 80, p. 16-pg., 2015-12-01.
Resumo

Lazy multi-label learning algorithms have become an important research topic within the multi-label community. These algorithms usually consider the set of standard k-Nearest Neighbors of a new instance to predict its labels (multi-label). The prediction is made by following a voting criteria within the multi-labels of the set of k-Nearest Neighbors of the new instance. This work proposes the use of two alternative strategies to identify the set of these examples: the Mutual and Not Mutual Nearest Neighbors rules, which have already been used by lazy single-learning algorithms. In this work, we use these strategies to extend the lazy multi-label algorithm BRkNN. An experimental evaluation carried out to compare both mutuality strategies with the original BRkNN algorithm and the well-known MLkNN lazy algorithm on 15 benchmark datasets showed that MLkNN presented the best predictive performance for the Hamming-Loss evaluation measure, although it was significantly outperformed by the mutuality strategies when F-Measure is considered. The best results of the lazy algorithms were also compared with the results obtained by the Binary Relevance approach using three different base learning algorithms. (AU)

Processo FAPESP: 13/12191-5 - Mineração do Comportamento de Usuários em Redes Sociais baseadas em Localização
Beneficiário:Jorge Carlos Valverde Rebaza
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 10/15992-0 - Explorando a dependência de rótulos no aprendizado multirrótulo
Beneficiário:Everton Alvares Cherman
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 11/02393-4 - Seleção de Atributos para Aprendizado Multirrótulo
Beneficiário:Newton Spolaôr
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 11/22749-8 - Desafios em visualização exploratória de dados multidimensionais: novos paradigmas, escalabilidade e aplicações
Beneficiário:Luis Gustavo Nonato
Modalidade de apoio: Auxílio à Pesquisa - Temático