Busca avançada
Ano de início
Entree


Feature Selection Using Geometric Semantic Genetic Programming

Texto completo
Autor(es):
Rosa, G. H. ; Papa, J. P. ; Papa, L. P. ; Ochoa, G
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION); v. N/A, p. 2-pg., 2017-01-01.
Resumo

Feature selection concerns the task of finding the subset of features that are most relevant to some specific problem in the context of machine learning. During the last years, the problem of feature selection has been modeled as an optimization task, where the idea is to find the subset of features that maximize some fitness function, which can be a given classifier's accuracy or even some measure concerning the samples' separability in the feature space, for instance. In this paper, we introduced Geometric Semantic Genetic Programming (GSGP) in the context of feature selection, and we experimentally showed it can work properly with both conic and non-conic fitness landscapes. (AU)

Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/25739-4 - Estudo de Semântica em Modelos de Aprendizado em Profundidade
Beneficiário:Gustavo Henrique de Rosa
Modalidade de apoio: Bolsas no Brasil - Mestrado