Busca avançada
Ano de início
Entree


Text/non-text classification of connected components in document images

Texto completo
Autor(es):
Julca-Aguilar, Frank D. ; Maia, Ana L. L. M. ; Hirata, Nina S. T. ; IEEE
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2017 30TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI); v. N/A, p. 6-pg., 2017-01-01.
Resumo

Text segmentation is an important problem in document analysis related applications. We address the problem of classifying connected components of a document image as text or non-text. Inspired from previous works in the literature, besides common size and shape related features extracted from the components, we also consider component images, without and with context information, as inputs of the classifiers. Multi-layer perceptrons and convolutional neural networks are used to classify the components. High precision and recall is obtained with respect to both text and non-text components. (AU)

Processo FAPESP: 16/06020-1 - Combinação de operadores no TRIOSLib
Beneficiário:Frank Dennis Julca Aguilar
Modalidade de apoio: Bolsas no Brasil - Programa Capacitação - Treinamento Técnico
Processo FAPESP: 15/17741-9 - Combinação de características locais e globais em aprendizagem de operadores de imagens
Beneficiário:Nina Sumiko Tomita Hirata
Modalidade de apoio: Auxílio à Pesquisa - Regular