Busca avançada
Ano de início
Entree


Debiasing Skin Lesion Datasets and Models? Not So Fast

Texto completo
Autor(es):
Bissoto, Alceu ; Valle, Eduardo ; Avila, Sandra ; IEEE COMP SOC
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020); v. N/A, p. 10-pg., 2020-01-01.
Resumo

Data-driven models are now deployed in a plethora of real-world applications - including automated diagnosis - but models learned from data risk learning biases from that same data. When models learn spurious correlations not found in real-world situations, their deployment for critical tasks, such as medical decisions, can be catastrophic. In this work we address this issue for skin-lesion classification models, with two objectives: finding out what are the spurious correlations exploited by biased networks, and debiasing the models by removing such spurious correlations from them. We perform a systematic integrated analysis of 7 visual artifacts (which are possible sources of biases exploitable by networks), employ a state-of-the-art technique to prevent the models from learning spurious correlations, and propose datasets to test models for the presence of bias. We find out that, despite interesting results that point to promising future research, current debiasing methods are not ready to solve the bias issue for skin-lesion models. (AU)

Processo FAPESP: 13/08293-7 - CECC - Centro de Engenharia e Ciências Computacionais
Beneficiário:Munir Salomao Skaf
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 17/16246-0 - Análise de mídias sensíveis usando arquiteturas de aprendizado profundo
Beneficiário:Sandra Eliza Fontes de Avila
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 19/05018-1 - Triagem Automática de Doenças para o Mundo Real
Beneficiário:Eduardo Alves Do Valle Junior
Modalidade de apoio: Bolsas no Exterior - Pesquisa