Busca avançada
Ano de início
Entree


Prediction of Harvest Time of Apple Trees: An RNN-Based Approach

Texto completo
Autor(es):
Boechel, Tiago ; Policarpo, Lucas Micol ; Ramos, Gabriel de Oliveira ; Righi, Rodrigo da Rosa ; Singh, Dhananjay
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: ALGORITHMS; v. 15, n. 3, p. 18-pg., 2022-03-01.
Resumo

In the field of agricultural research, Machine Learning (ML) has been used to increase agricultural productivity and minimize its environmental impact, proving to be an essential technique to support decision making. Accurate harvest time prediction is a challenge for fruit production in a sustainable manner, which could eventually reduce food waste. Linear models have been used to estimate period duration; however, they present variability when used to estimate the chronological time of apple tree stages. This study proposes the PredHary model, which is a machine learning model that uses Recurrent Neural Networks (RNN) to predict the start date of the apple harvest, given the weather conditions related to the temperature expected for the period. Predictions are made from the phenological phase of the beginning of flowering, using a multivariate approach, based on the time series of phenology and meteorological data. The computational model contributes to anticipating information about the harvest date, enabling the grower to better plan activities, avoiding costs, and consequently improving productivity. We developed a prototype of the model and performed experiments with real datasets from agricultural institutions. We evaluated the metrics, and the results obtained in evaluation scenarios demonstrate that the model is efficient, has good generalizability, and is capable of improving the accuracy of the prediction results. (AU)

Processo FAPESP: 20/05165-1 - Comunicação e aprendizado de máquina em mobilidade urbana: uma abordagem multiagente e multiobjetivo
Beneficiário:Ana Lúcia Cetertich Bazzan
Modalidade de apoio: Auxílio à Pesquisa - Regular