| Texto completo | |
| Autor(es): |
Moreira, Debora C.
;
Ribatski, Gherhardt
;
Kandlikar, Satish G.
;
Amer Soc Mech Engineers
Número total de Autores: 4
|
| Tipo de documento: | Artigo Científico |
| Fonte: | PROCEEDINGS OF THE ASME 2020 18TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS (ICNMM2020); v. N/A, p. 8-pg., 2020-01-01. |
| Resumo | |
Flow boiling heat fransfer in microchannels can remove high heat loads from restricted spaces with high heat fransfer coefficients and minimum temperature gradients. However, many works still report problems with instabilities, high pressure drop and early critical heat flux, which hinder its possible applications as thermal management solutions. Much comprehension on the phenomena concerning flow boiling heat transfer is still missing, therefore many investigations rely on empirical methods and parametric studies to develop novel configurations of more efficient heat sinks. Nevertheless, investigations involving vapor extraction have successfully addressed all these previously reported issues while also increasing the heat transfer of heat sinks employing flow boiling in microchannels. In this sense, the objective of this review is to identify the main techniques employed for vapor extraction in micro channels-based heat sinks and analyze the physical mechanisms underneath the observed improvements during flow boiling, such that some design guidelines can be drawn. Three main strategies can be identified: passive vapor extraction, active vapor extraction, and membrane-based vapor extraction. All these strategies were able to dissipate heat fluxes higher than 1 kW/cm(2), with the best performance achieved by a membrane-based heat sink, followed by active and passive designs. According to the present experimental and numerical data available in the literature, there is still room for improvement. (AU) | |
| Processo FAPESP: | 15/24834-3 - Desenvolvimento de dissipadores de calor de alto desempenho baseados em multi-microcanais contendo superfícies micro- e nanoestruturadas visando aplicações em receptores solares |
| Beneficiário: | Debora Carneiro Moreira |
| Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |
| Processo FAPESP: | 16/09509-1 - Processos de transferência de calor com mudança de fase de elevado desempenho aplicados ao aproveitamento de energia solar |
| Beneficiário: | Gherhardt Ribatski |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 17/12576-5 - Projeto e caracterização experimental de absorvedores térmicos baseados em microcanais para coletores solares |
| Beneficiário: | Debora Carneiro Moreira |
| Modalidade de apoio: | Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado |