Busca avançada
Ano de início
Entree


Gait Recognition Based on Deep Learning: A Survey

Texto completo
Autor(es):
Mostrar menos -
Goncalves Dos Santos, Claudio Filipi ; Oliveira, Diego De Souza ; Passos, Leandro A. ; Pires, Rafael Goncalves ; Silva Santos, Daniel Felipe ; Valem, Lucas Pascotti ; Moreira, Thierry P. ; Santana, Marcos Cleison S. ; Roder, Mateus ; Papa, Joao Paulo ; Colombo, Danilo
Número total de Autores: 11
Tipo de documento: Artigo Científico
Fonte: ACM COMPUTING SURVEYS; v. 55, n. 2, p. 34-pg., 2023-03-01.
Resumo

In general, biometry-based control systems may not rely on individual expected behavior or cooperation to operate appropriately. Instead, such systems should be aware of malicious procedures for unauthorized access attempts. Some works available in the literature suggest addressing the problem through gait recognition approaches. Such methods aim at identifying human beings through intrinsic perceptible features, despite dressed clothes or accessories. Although the issue denotes a relatively long-time challenge, most of the techniques developed to handle the problem present several drawbacks related to feature extraction and low classification rates, among other issues. However, deep learning-based approaches recently emerged as a robust set of tools to deal with virtually any image and computer-vision-related problem, providing paramount results for gait recognition as well. Therefore, this work provides a surveyed compilation of recent works regarding biometric detection through gait recognition with a focus on deep learning approaches, emphasizing their benefits and exposing their weaknesses. Besides, it also presents categorized and characterized descriptions of the datasets, approaches, and architectures employed to tackle associated constraints. (AU)

Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/12101-0 - Suporte para o ambiente computacional e execução de experimentos: aquisição de dados, categorização e manutenção
Beneficiário:Leandro Aparecido Passos Junior
Modalidade de apoio: Bolsas no Brasil - Programa Capacitação - Treinamento Técnico
Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs