Busca avançada
Ano de início
Entree


Weakly supervised learning based on hypergraph manifold ranking?

Texto completo
Autor(es):
Presotto, Joao Gabriel Camacho ; dos Santos, Samuel Felipe ; Valem, Lucas Pascotti ; Faria, Fabio Augusto ; Papa, Joao Paulo ; Almeida, Jurandy ; Pedronette, Daniel Carlos Guimaraes
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION; v. 89, p. 12-pg., 2022-10-25.
Resumo

Significant challenges still remain despite the impressive recent advances in machine learning techniques, particularly in multimedia data understanding. One of the main challenges in real-world scenarios is the nature and relation between training and test datasets. Very often, only small sets of coarse-grained labeled data are available to train models, which are expected to be applied on large datasets and fine-grained tasks. Weakly supervised learning approaches handle such constraints by maximizing useful training information in labeled and unlabeled data. In this research direction, we propose a weakly supervised approach that analyzes the dataset manifold to expand the available labeled set. A hypergraph manifold ranking algorithm is exploited to represent the contextual similarity information encoded in the unlabeled data and identify strong similarity relations, which are taken as a path to label expansion. The expanded labeled set is subsequently exploited for a more comprehensive and accurate training process. The proposed model was evaluated jointly with supervised and semi-supervised classifiers, including Graph Convolutional Networks. The experimental results on image and video datasets demonstrate significant gains and accurate results for different classifiers in diverse scenarios. (AU)

Processo FAPESP: 18/15597-6 - Aplicação e investigação de métodos de aprendizado não-supervisionado em tarefas de recuperação e classificação
Beneficiário:Daniel Carlos Guimarães Pedronette
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores - Fase 2
Processo FAPESP: 18/23908-1 - Buscando Robustez em Arquiteturas de Aprendizagem Profunda para Aplicações e-Science
Beneficiário:Fabio Augusto Faria
Modalidade de apoio: Bolsas no Exterior - Pesquisa
Processo FAPESP: 17/25908-6 - Aprendizado fracamente supervisionado para análise de vídeos no domínio comprimido em tarefas de recuperação e classificação para alertas visuais
Beneficiário:João Paulo Papa
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE
Processo FAPESP: 19/04754-6 - Aprendizado fracamente supervisionado baseado em métricas de Ranqueamentto
Beneficiário:João Gabriel Camacho Presotto
Modalidade de apoio: Bolsas no Brasil - Mestrado
Processo FAPESP: 20/11366-0 - Suporte para ambiente computacional e execução de experimentos: aprendizado fracamente supervisionado e fusão de métodos de classificação
Beneficiário:Lucas Pascotti Valem
Modalidade de apoio: Bolsas no Brasil - Programa Capacitação - Treinamento Técnico