Busca avançada
Ano de início
Entree


The skew-t censored regression model: parameter estimation via an EM-type algorithm

Texto completo
Autor(es):
Lachos, Victor H. ; Bazan, Jorge L. ; Castro, Luis M. ; Park, Jiwon
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS; v. 29, n. 3, p. 19-pg., 2022-05-01.
Resumo

The skew-t distribution is an attractive family of asymmetrical heavy-tailed densities that includes the normal, skew-normal and Student's-t distributions as special cases. In this work, we propose an EM-type algorithm for computing the maximum likelihood estimates for skew-t linear regression models with censored response. In contrast with previous proposals, this algorithm uses analytical expressions at the E-step, as opposed to Monte Carlo simulations. These expressions rely on formulas for the mean and variance of a truncated skew-t distribution, and can be computed using the R library MomTrunc. The standard errors, the prediction of unobserved values of the response and the log-likelihood function are obtained as a by-product. The proposed methodology is illustrated through the analyses of simulated and a real data application on Letter-Name Fluency test in Peruvian students. (AU)

Processo FAPESP: 21/11720-0 - Aprendizagem supervisionada em dados de resposta limitada auxiliados por computador com aplicações em dados desbalanceados
Beneficiário:Jorge Luis Bazan Guzman
Modalidade de apoio: Auxílio à Pesquisa - Regular