Busca avançada
Ano de início
Entree


GRADINGS ON BLOCK-TRIANGULAR MATRIX ALGEBRAS

Texto completo
Autor(es):
Diniz, Diogo ; Da Silva, Jose Lucas Galdino ; Koshlukov, Plamen
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Proceedings of the American Mathematical Society; v. N/A, p. 9-pg., 2023-09-20.
Resumo

Upper triangular, and more generally, block-triangular matrices, are rather important in Linear Algebra, and also in Ring theory, namely in the theory of PI algebras (algebras that satisfy polynomial identities). The group gradings on such algebras have been extensively studied during the last decades. In this paper we prove that for any group grading on a block-triangular matrix algebra, over an arbitrary field, the Jacobson radical is a graded (homogeneous) ideal. As noted by F. Yasumura [Arch. Math. (Basel) 110 (2018), pp. 327-332] this yields the classification of the group gradings on these algebras and confirms a conjecture made by A. Valenti and M. Zaicev [Arch. Math. (Basel) 89 (2007), pp. 33-40]. (AU)

Processo FAPESP: 18/23690-6 - Estruturas, representações e aplicações de sistemas algébricos
Beneficiário:Ivan Chestakov
Modalidade de apoio: Auxílio à Pesquisa - Temático